Fractal Entropies and Dimensions for Microstates Spaces

نویسنده

  • KENLEY JUNG
چکیده

Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropies for finite sets of selfadjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebraic invariant. We compute the free Hausdorff dimension in the cases where the set generates a finite dimensional algebra or where the set consists of a single selfadjoint. We show that the Hausdorff dimension becomes additive for such sets in the presence of freeness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Entropies and Dimensions for Microstate Spaces, Ii

[1] introduced fractal geometric entropies and dimensions for Voiculescu’s microstate spaces ([3], [4]). One can associate to a finite set of selfadjoint elements X in a tracial von Neumann algebra and an α > 0 an extended real number H(X) ∈ [−∞,∞]. H(X) is a kind of asymptotic logarithmic α-Hausdorff measure of the microstate spaces of X. One can also define a free Hausdorff dimension of X, de...

متن کامل

Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues.

1. Investigations that assess cardiac autonomic function include non-linear techniques such as fractal dimension and approximate entropy in addition to the common time and frequency domain measures of both heart period and heart rate. This article evaluates the differences in using heart rate versus heart period to estimate fractal dimensions and approximate entropies of these time series.2. Tw...

متن کامل

Lyapunov Exponent, Generalized Entropies and Fractal Dimensions Of Hot Drops

We calculate the maximal Lyapunov exponent, the generalized entropies, the asymptotic distance between nearby trajectories and the fractal dimensions for a finite two dimensional system at different initial excitation energies. We show that these quantities have a maximum at about the same excitation energy. The presence of this maximum indicates the transition from a chaotic regime to a more r...

متن کامل

REGULAR ARTICLES Entropy computing via integration over fractal measures

We discuss the properties of invariant measures corresponding to iterated function systems ~IFSs! with place-dependent probabilities and compute their Rényi entropies, generalized dimensions, and multifractal spectra. It is shown that with certain dynamical systems, one can associate the corresponding IFSs in such a way that their generalized entropies are equal. This provides a new method of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008